Atomic-Scale Magnetism of Cr-Doped Bi2Se3 Thin Film Topological Insulators.
نویسندگان
چکیده
Magnetic doping is the most common method for breaking time-reversal-symmetry surface states of topological insulators (TIs) to realize novel physical phenomena and to create beneficial technological applications. Here we present a study of the magnetic coupling of a prototype magnetic TI, that is, Cr-doped Bi2Se3, in its ultrathin limit which is expected to give rise to quantum anomalous Hall (QAH) effect. The high quality Bi2-xCrxSe3 epitaxial thin film was prepared using molecular beam epitaxy (MBE), characterized with scanning transimission electron microscopy (STEM), electrical magnetotransport, and X-ray magnetic circularly dichroism (XMCD) techniques, and the results were simulated using density functional theory (DFT) with spin-orbit coupling (SOC). We observed a sizable spin moment mspin = (2.05 ± 0.20) μB/Cr and a small and negative orbital moment morb = (-0.05 ± 0.02) μB/Cr of the Bi1.94Cr0.06Se3 thin film at 2.5 K. A remarkable fraction of the (CrBi-CrI)(3+) antiferromagnetic dimer in the Bi2-xCrxSe3 for 0.02 < x < 0.40 was obtained using first-principles simulations, which was neglected in previous studies. The spontaneous coexistence of ferro- and antiferromagnetic Cr defects in Bi2-xCrxSe3 explains our experimental observations and those based on conventional magnetometry which universally report magnetic moments significantly lower than 3 μB/Cr predicted by Hund's rule.
منابع مشابه
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure an...
متن کاملAtomic-level structural and chemical analysis of Cr-doped Bi2Se3 thin films
We present a study of the structure and chemical composition of the Cr-doped 3D topological insulator Bi2Se3. Single-crystalline thin films were grown by molecular beam epitaxy on Al2O3 (0001), and their structural and chemical properties determined on an atomic level by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A regular quintuple lay...
متن کاملMagnetism-induced massive Dirac spectra and topological defects in the surface state of Cr-doped Bi2Se3-bilayer topological insulators
1 Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA 2 Institute of Quantum Matter and Information, California Institute of Technology, Pasadena, CA 91125, USA 3 Department of Electrical Engineering, University of California, Los Angeles, CA 90095, USA 4 Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125, USA * E-mail: ncyeh@calte...
متن کاملProduction and Characterization of Topological Insulators
Topological insulators (TIs) represent a novel category of material whose bulk insulates, but whose surface conducts. The ability to produce topological insulators would be of great interest, because electron states can cross the insulating band gap, as well as surface conduction and spin-locking properties [1]. Bismuth selenide (Bi2Se3) is one of the best candidates for three dimensional (3D) ...
متن کاملMagnetic doping and kondo effect in bi(2)se(3) nanoribbons.
A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surface-to-volume ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 9 10 شماره
صفحات -
تاریخ انتشار 2015